In addition to standard writing equipment, you are allowed to bring in and consult one handwritten two-sided A4 sheet of personal notes during the exam. Please include your name and student number on your answer sheets.

Problem 1

Suppose E is a normed space over the scalar field \mathbb{K} . Assume that E is not complete.

- (a) Denote $X := \mathcal{L}(E)$, and take $A, B \in X$ and $\alpha \in \mathbb{K}$. Write down the (standard) definitions of $A + B \in X$, $\alpha A \in X$ and ||A||. Is X always a Banach space? (You do not need to prove your answer.)
- (b) Consider the (continuous) dual E^* of E. Give the definition of E^* , including its norm. Is E^* always a Banach space? (You do not need to prove your answer.)

(Grading: 3 points from each of the items.)

Problem 2

Suppose H is a Hilbert space, with an inner product $(\cdot | \cdot)$. Assume that M is a closed linear subspace of H.

- (a) Give the definition of the orthogonal complement M^{\perp} of M. Give the definition of the orthogonal projection P_M onto M. (2 points)
- (b) Assume that F is a normed space, and $T_1 \in \mathcal{L}(M,F)$. Show that T_1 has a continuous linear extension to H, i.e., show that there is $T: H \to F$ which is continuous, linear, and $Tx = T_1x$ for all $x \in M$. Can you find such an extension if M is not closed? (3 points)
- (c) Give an example which proves that the extension T in (b) is not always unique. (1 point)

Problem 3

Consider E:=C([0,1]) endowed with the sup-norm which was proven to be a Banach space during the course. Given $f\in E$, define $Sf:[0,1]\to\mathbb{R}$ by setting

$$(Sf)(x) = f(x) - \int_0^x t f(t) dt, \qquad x \in [0, 1].$$

- (a) Show that $S: f \mapsto Sf$ is a continuous linear map $E \to E$. Prove using the Neumann series that S is an invertible operator, i.e., that it has an inverse map S^{-1} and the inverse map is a bounded operator. (4 points)
- (b) Show that the inverse operator S^{-1} is positivity preserving: If $f(x) \ge 0$ for all x, then also $(S^{-1}f)(x) \ge 0$ for all x. Is the original operator S also positivity preserving? (2 points)

Problem 4

- (a) Write down the assumptions and statement of the Open Mapping Theorem. (2 points)
- (b) Assume that a_k , $k \in \mathbb{N}$, are real numbers with the following property: the series $\sum_{k=1}^{\infty} a_k x_k$ is convergent for every real sequence $x \in \ell^1$. Given $x \in \ell^1$, let T(x) denote the value of the series and consider the function $T: \ell^1 \to \mathbb{R}$. Prove that $\sup_k |a_k| < \infty$, $T \in (\ell^1)^*$, and that $||T|| = \sup_k |a_k|$. (4 points)

(Hint: Banach Steinhaus theorem.)