Kankaanrinta

University of Helsinki
Department of Mathematics and Statistics
Homotopy theory, MAST 31020
Midtern Exam 2, May 7, 2019

1. (6 points)

- (1) Use homotopy groups to show that there is no retraction $\mathbb{R}P^n \to \mathbb{R}P^k$ if n > k > 0.
- (2) Show that $\pi_7(\mathbb{S}^4)$ contains an element of infinite order.

2. (6 points)

- (1) Let $p: X \to Y$ be a fibration and suppose that $s: X \to W$ and $g: W \to Y$ are maps with $g \circ s = p$. Assume g is injective. Show that s is a fibration.
- (2) Let A be a subspace of a space X. Let $i: A \hookrightarrow X$ be the inclusion. Assume $i_*: \pi_1(A) \to \pi_1(X)$ is injective. Show that $\pi_2(X, A)$ is abelian.
- **3.** (6 points) Let A be a closed, contractible subspace of a topological space X. Assume the inclusion $j: A \hookrightarrow X$ is a cofibration. Show that the quotient map $q: X \to X/A$ is a homotopy equivalence.

4. (6 points)

- (1) State the Blakers Massey theorem (i.e., the homotopy excision theorem).
- (2) Define the infinite symmetric product SP(X) of a pointed space X.