## INTRODUCTION TO NUMBER THEORY

Final Exam (Monday 9.12.19)

OBS. Answer only 4 of the following 6 questions (you are free to choose the 4 questions you answer). You may answer either in Finnish or English.

- 1. Find all integers that leave the remainder 1 when divided 3, the remainder 2 when divided by 5, and the remainder 3 when divided by 7.
- 2. (i) Define Euler's function  $\mathbb{Q}$ . What is the formula for  $\mathbb{Q}(n)$  if one knows the prime number decomposition of  $n \geq 2$ , say  $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$ , where the  $p_j$ :s are distinct primes.
  - (ii) Prove: if m and n are positive integers such that m|n, then also  $\mathcal{Q}(m)|\mathcal{Q}(n)$ .
- 3. (i) Let  $(x_0, y_0)$  be the smallest positive solution to Pell's equation  $x^2 Dy^2 = 1$ . What is the second smallest positive solution in terms of  $x_0$  and  $y_0$ ?
  - (ii) Find the continued fraction expansion of  $\sqrt{7}$ . Determine the fundamental solution of Pell's equation  $x^2 7y^2 = 1$ .
- 4. Show (e.g. using theorems of the lectures or directly), that there is a constant c > 0 such that

 $|\sqrt{5} - \frac{m}{n}| \ge \frac{c}{n^2}$  for all integers  $m, n \quad (n \ne 0)$ .

- 5. (i) Prove by assuming only the notions of divisibility and a prime number, that every positive integer  $n \ge 2$  can be written as a product of prime numbers.
  - (ii) Describe (perhaps with not all details) how one proves the same for Gaussian integers, i.e., that every Gaussian integer (that is not 0, nor a unit) is a product of Gaussian primes.
- **6.** (i) Define the following notions: Gaussian integers, Gaussian units, greatest common divisor of given Gaussian integers, Gaussian primes, associates of a given Gaussian integer. Give some examples.
  - (ii) Find all the Gaussian prime factors (up to moving to an associate) of 51.