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Notes, tables of formulae, and calculators are not allowed in the exam.

1. Using Tarski’s truth definition show that the following formula is valid

∀x0R0(x0, c0) → ∀x0∃x1R0(x0, x1)

Solution:

Solution is based on the definition of validity: A first order formula
of vocabulary L is valid if it is satisfied by every assignment in every
structure for L.

In this task, the vocabulary L = {R0}. For the proof, let us assume
that M is an arbitrary L-structure and s is an assignment.

Now, we apply Tarski’s truth definition to the given formula

M |=s ∀x0R0(x0, c0) → ∀x0∃x1R0(x0, x1)

if and only if

M ̸|=s ∀x0R0(x0, c0) or M |=s ∀x0∃x1R0(x0, x1)

Case 1: Assume M ̸|=s ∀x0R0(x0, c0), then the above disjunction is
true.

Case 2: Assume M |=s ∀x0R0(x0, c0).

This means that for all a ∈ M we have that

M |=s(a/x0) R0(a, c0).

From this, by substituting the variable x1 for the constant cM0 , we
obtain

For all a ∈ M , M |=s(a/x0)(cM0 /x1) R0(a, x1).

Now we may introduce the existential quantifier, and obtain

For all a ∈ M , M |=s(a/x0) ∃x1R0(a, x1).

Finally, we write the universal quantifier back to the formula

M |= ∀x0∃x1R0(x0, x1),



which is what we needed to show in order to have the above disjunc-
tion to hold. Therefore, M and s satisfy the formula ∀x0R0(x0, c0) →
∀x0∃x1R0(x0, x1).

Validity is also possible to be show by proving with Tarski’s truth
definition that the formula ∀x0∃x1R0(x0, x1) is a logical consequence of
the formula ∀x0R0(x0, c0).

Grading: Max 6 points. The solution must be based on Tarski’s
truth definition but it has not to be as detailed and formal as the
above example solution. Reduce 2-3 points from omitting several steps
showing how connectives or quantifiers should be handled by the truth
definition. For validity, one has to consider an arbitrary L-structure
and an assignment, reduce 1 point if that is not mentioned. Reduce
1 or 2 points from unclear presentation. If the solution goes seriously
wrong, give 1 or 2 points if there are at least some correct and relevant
things related to a solution.
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2. Let M = (N, RM
0 ), where RM

0 = {(a, b) ∈ N2 | a < b}.
Show that the set {0} can be defined by a formula in M.

Solution:

Suppose the formulaA of vocabulary L has only the variable x free. The
set P defined by the formula A on a structure M is the set of elements
a such that some (equivalently all) assignment s with s(x) = a satisfies
A. We may also write this as P = {a ∈ M | M |=s(x/a) A(x)}.
Here the vocabulary is L = {R0}. We need to find a formula A(x) of
L so that

{0} = {a ∈ M | M |=s(x/a) A(x)}

in the structure of natural numbers with the less than relation, that
is M = (N, RM

0 ), where RM
0 = {(a, b) ∈ N2 | a < b}. The solution

utilizes the fact that zero is the least element in that ordering.

The most common choices for A(x) are

• ∀x(R0(a, x) ∨ a = x) i.e. a is less than or equal to all other
numbers.

• ¬∃xR0(x, a) i.e. there is no element less than a.

• Logically equivalent variations of the above two.

Grading: Max 6 points. Presenting a correct formula is enough for
a solution. The formula ∀xR0(a, x) is somewhat close to solution but
if one considers it more carefully, one realizes that actually no element
satisfies it. Give 3 points.

The formula has to be well formed in the vocabulary {R0}, so formulas
such as a < 1 are not correct, reduce 2-4 points according to how many
symbols outside of the vocabulary are used in the defining formula.
Reduce 1 or 2 points from unclear presentation. If the solution goes
seriously wrong, give 1 or 2 points if there are at least some correct and
relevant things related to a solution.
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3. Prove by natural deduction ∃x0A → ∃x0B
from the formula ∀x0(A → B).
Explicitly check in writing that used quantifier rules apply.

Solution:

[∃x0A]
2

∀x0(A → B)
∀ E, a

A → B [A]1
→ E

B ∃ I, b
∃x0B ∃ E, 1, c

∃x0B → I, 2
∃x0A → ∃x0B

a: x0 is free for x0 in A → B

b: x0 is free for x0 in B

c: x0 is not free in ∃x0B

Grading: Max 6 points. Reduce two points each time a rule is used
incorrectly. Reduce 1 or 2 points if there are uneliminated assumptions
or conditions for quantifier rules are left unchecked. If the solution goes
seriously wrong, give 1 or 2 points if there are at least some correct and
relevant things related to a solution such as correct applications of rules
or an adequate beginning of the deduction.
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4. Consider the structures M and M′ for the vocabulary {R0}. The uni-
verses of both structures M and M′ consist of the numbers {0, 1, 2, 3}
and the interpretations of the symbols are

RM
0 = {(0, 1), (0, 2), (1, 3), (2, 3)}

and
RM′

0 = {(0, 1), (0, 2), (3, 1), (3, 2)}.

Are the structures M and M′ isomorphic?
Complete solution requires explicitly checking the conditions for being
isomorphic.

Solution:
Let us first draw pictures of these two graphs:

For these two structures to be isomorphic, it is required that there is a
mapping f so that

ISO1 f maps elements of the universe of M to elements of the universe of
M′.

ISO2 Every element of the universe of M′ is the image of exactly one ele-
ment of the universe of M.

ISO3 (a, b) ∈ RM
0 if and only if (f(a), f(b)) ∈ RM′

0 for all a, b ∈ M .
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Because the universes of the structures have the same number of elements
it is easy to establish conditions ISO1 and ISO2, e.g. by the identity mapping
from M to M ′ with f(x) = x for all x ∈ M . That mapping is injective and
surjective, so ISO2 is satisfied.

There are many ways to show that the condition ISO3 cannot hold for
these two structures.

For instance, from the picture we see that there are very different “paths”
in the two structures (that are in this case directed graphs). In M, starting
from 0, it is possible to go via a node and still be able to continue, e.g.
with path (0, 1)(1, 3). In M′, that is not the case: from whichever node one
starts, it is not possible to continue more than one node. This leads to the
observation that it is not possible to map the node 1 in M to any node in
M′ and maintain condition ISO3.

Another way to see that ISO3 cannot hold is to use projections: For
example, first projection of RM

0 is {0, 1, 2} (the elements for which there is an
outbound arrow, whereas first projection of RM′

0 is the set {0, 3}. Therefore,
there could not be an isomorphism between the two structures, since an
isomorphism preserves the projections.

Yet another way is to utilize the fact that isomorphisms preserve trurh
of formulas. For example, both of the above situations can be expressed by
formulas that are true in M and false in M′.

Grading: Max 6 points. If only the condition ISO3 is checked, reduce
2 points. If ISO1 and ISO2 are correctly checked but the solution argues
that ISO3 also holds reduce 3 points. Reduce 1 or 2 points from unclear
presentation. If the solution goes seriously wrong, give 1 or 2 points if there
are at least some correct and relevant things related to a solution.
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