Department of Mathematics and Statistics Measure and integration Final exam 10.3.2023

1. Let A and B be measurable subsets of \mathbb{R}^n such that $m(A \cap B) < \infty$. Prove that

$$m(A \cup B) = m(A) + m(B) - m(A \cap B).$$

2. Let $A \subset \mathbb{R}^n$ and let $f: A \to \mathbb{R}$ be measurable. Define $A_r = \{x \in A : f(x) > r\}$

for $r \in \mathbb{R}$. Suppose that $m_n(A_0) > 0$. Prove that there exists r > 0 such that $m_n(A_r) > 0$.

- 3. Suppose that functions $f \colon A \to \mathbb{R}$ and $g \colon A \to \mathbb{R}$ are measurable. Prove that the sets $\{x \in A \colon f(x) < g(x)\}$ and $\{x \in A \colon f(x) = g(x)\}$ are measurable.
- 4. Let $f: E \to \mathbb{R}$ be a measurable function and E a measurable set such that $m(E) < \infty$. Denote

$$E_i = \{ x \in E : 0 < f(x) < 1/i \}$$

for $i \in \mathbb{N}$. Prove that

$$\lim_{i \to \infty} m(E_i) = 0.$$

5. Find the limit

$$\lim_{k \to \infty} k \int_1^\infty x^{-3} \sin(x/k) \cos(x/k) \, dx.$$

[Provide an argument for your answer.]