Probability theory I - Exam 22.10.2019

The exam lasts 3 hours. Only pen and paper are allowed on the exam. Grading: 6 points are enough to pass; 14 points are enough to get 5. Points may be awarded for partial soultions, correct ideas etc.; please write everything

PROBLEM 1. (4 points) Let $\sigma > 1$, and let ζ and X be two independent scalar random variables such that $\mathbb{P}(\zeta=1)=\mathbb{P}(\zeta=-1)=\frac{1}{2}$, and X has density $(\sigma-1)\mathbb{I}_{x\geq 1}x^{-\sigma}$. Compute the expectation $\mathbb{E}(\zeta X)$, depending on σ .

PROBLEM 2. (4 points) Let X_1, X_2, \ldots be a sequence of scalar random variables defined on the same probability space. Suppose that there is a constant $C \in \mathbb{R}$ such that $\mathbb{E}|X_i| < C$.

- (1) Prove that if $a_n \to 0$, then $a_i X_i \to 0$ in probability; (2) Prove that if $\sum |a_n| < \infty$, then $a_i X_i \to 0$ almost surely.

PROBLEM 3. (4 points) Let X_1, X_2, \ldots be i. i. d. scalar random variables with density $3\mathbb{I}_{x\geq 1}x^{-4}$. Let $S_n :=$ $\sum_{i=1}^{n} X_{i}$. For each $a \in \mathbb{R}$, compute the limit $\lim_{n \to \infty} \mathbb{P}(\frac{1}{n}S_{n} \leq a)$. Justify your answer.

PROBLEM 4. (4 points) Prove that, for a non-negative random variable X, one has

$$\mathbb{E}X = \int_0^\infty \mathbb{P}(X > t)dt.$$