Topology II Exam October 17, 2024 Exam time 14.00-17.00 ## **Problems** - **p1.** Let (X, \mathcal{T}) be a topological space and let \mathcal{B} be a basis of \mathcal{T} , and let (Y, \mathcal{T}') be a topological space and let \mathcal{B}' be a basis of \mathcal{T}' . Let also $f: X \to Y$ be a function. Show that f is an open map, if and only if for each $x \in X$ and $B \in \mathcal{B}$ containing x there exists $B' \in \mathcal{B}'$ for which $f(x) \in \mathcal{B}' \subset fB$. - **p2.** Let $f: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ be continuous map and let \mathcal{T}^f be the topology coinduced by f from \mathcal{T} . Let $g: Y \to Z$ be continuous mapping from (Y, \mathcal{T}') to (Z, \mathcal{T}'') . Show that $g: Y \to Z$ is continuous from (Y, \mathcal{T}^f) to (Z, \mathcal{T}'') . - **p3.** Let I be a set and, for each $i \in I$, let (X_i, \mathcal{T}_i) be a topological space and $E_i \subset X_i$ be a subset having empty interior in (X_i, \mathcal{T}_i) , that is, $\operatorname{int}_{X_i} E_i = \emptyset$. Show that $E = \{(x_i)_{i \in I} : x_i \in E_i \text{ for each } i \in I\}$ has empty interior in the product space $X = \prod_{i \in I} X_i$, that is, $\operatorname{int}_X E = \emptyset$. - p4. Show that there is no function $f: \mathbb{R} \to \mathbb{R}$ which has a strict local minimum¹ at each point of \mathbb{R} . Note that f is not assumed to be continuous. (Hints: You may want to follow the following strategy: For each $n \in \mathbb{N}$, let $E_n = \{x \in \mathbb{R} \setminus \mathbb{Q} : f(y) > f(x) \text{ for } \}x 1/n, x + 1/n[\}$. (a) Show that $\mathbb{R} = \bigcup_{n \in \mathbb{N}} \overline{E_n} \cup \bigcup_{q \in \mathbb{Q}} \{q\}$ (2p). (b) Show that there exists $n \in \mathbb{N}$ for which $\inf \overline{E_n} \neq \emptyset$ (2p). (c) Show that there exists $q \in \mathbb{Q}$ which is not a local minimum (2p).) ¹A real valued function $f: X \to \mathbb{R}$ on a topological space X has a strict local minimum at $x \in X$ if there exists a neighborhood U of x for which f(y) > f(x) for $y \in U \setminus \{x\}$.